Tetrahedron Letters, Vol.25, No.33, pp 3641-3642, 1984 0040-4039/84 \$3.00 + .00 Printed in Great Britain ©1984 Pergamon Press Ltd.

CONFORMATIONAL STUDIES BY DYNAMIC NMR. PART 29¹. INTERCHANGE OF SYMMETRY BETWEEN THE GROUND AND EXCITED ROTATIONAL STATES OF THE ISOMERIC N,N-DIISOPROPYLNAPHTHYLAMINES.

Daniele Casarini, Lodovico Lunazzi* and Dante Macciantelli

Istituto di Chimica Organica. Università. Viale Risorgimento 4, Bologna (Italy) and Istituto C.N.R., Via Tolara di Sotto, Ozzano Emilia (Italy).

<u>Summary</u>: Low temperature NMR spectra show that the rotational ground state of N,N-diisopropyl -1-naphthylamine is perpendicular whereas that of its isomer (N,N-diisopropyl-2-naphthylamine) is planar: their rotational barriers have been measured (15.4 and 6.3 Kcal/mol respectively).

Non hindered aromatic amines adopt a conformation where the ring is coplanar with the dynamic plane containing the rapidly inverting nitrogen atom.² Rotation occurs through a perpendicular transition state: the corresponding free energies of activation have been recently measured in solution by NMR.³⁻⁵ Aromatic amines hindered by ortho substituents are expected, on the contrary, to adopt a conformation with twisting angles close to 90°; rotation hence occurs through a planar transition state.^{6,7}

We have here obtained direct evidence that N,N-diisopropyl-1-naphthylamine (1) belongs to the first class whilst its isomer, N,N-diisopropyl-2-naphthylamine (2), belongs to the second one, the interchange of the conformational symmetries being due to the different steric demand.

In fact the 300 MHz proton NMR spectrum of 1 displays, below 20°C, two doublets for CH_3 but only one multiplet (septet) for CH. Homodecoupling experiments confirm that below this temperature there is a single line for CH but a pair of lines for CH_3 . The same behaviour is also observed by C-13 NMR (Figure). On raising the temperature the methyls become homotopic: the conformation of 1 has thus to be perpendicular (or librating with a negligible barrier about a perpendicular geometry) as indicated in the following scheme, where a top view of 1 is presented:

$$A \longrightarrow \bigcup_{i=1}^{N} A \longrightarrow B \longrightarrow \bigcup_{i=1}^{N} A$$

Whereas the two CH groups are always homotopic, the methyls within the isopropyl groups A and B become anisochronous when the interconversion is slow, owing to the absence of a molecular plane of symmetry bisecting the Me-CH-Me angle: the methyls are thus prochiral at low temperature. The

process that renders the methyls homotopic is a C-N rotation that requires a passage through a coplanar transition state: the corresponding ΔG^{\neq} , obtained by line shape simulation, is given in the Table.

The C-13 spectrum (at -145°) of the isomer 2 displays, on the other hand, two lines for both CH and CH₃. This implies the existence of a coplanar conformation where the two isopropyl groups experience different spatial environments. Equivalence of CH and CH₃ is reached above -135° by a rotational process through a perpendicular transition state. The much higher ΔG^{\neq} of 1 with respect to 2 depends on the steric effect due to H8, that enhances the energy of the planar transition state of 1 with respect to the perpendicular ground state.

<u>Figure</u>. C-13 NMR spectra (25.2 MHz) of the aliphatic region of 2 in CHF_2CI (left) and of 1 in $CDCl_3$ (right), taken at temperatures (-145° and -20° respectively) where the internal rotations are slow.

TARIE

	Solvent	Temperature range (°C)	⊿G [≠] (Kcal/mol)	Frequency (MHz)	Δν(CH) (Hz)	Δν(CH ₃) (Hz) ³
1	cs ₂	+9, +24	15.4	300 (H-1)	-	17
1	CDC1 3	+6, +27	15.5	300 (H-1)	-	17.5
1	(CD ₃) ₂ CO	+10, +30	15.5	300 (H-1)	-	18
1	CDC1	+19, +38	15.3	25.2 (C-13)	-	59
2	CHF2C1	-139,-135	6.3	25.2 (C-13)	114	86

REFERENCES

- 1. Part 28. L. Lunazzi and D. Macciantelli, Tetrahedron, in the press
- 2. J.C.D. Brand, D.R. Williams and T.J. Cook, J.Mol.Spectr., 20, 359 (1966)
- 3. a) L. Lunazzi, C. Magagnoli, M. Guerra and D. Macciantelli, <u>Tetrahedron Lett.</u>, 3031 (1979).
- b) L. Lunazzi, C. Magagnoli and D. Macciantelli, <u>J.Chem.Soc., Perkin Trans. 2</u>, 1704 (1980).
- 4. F.A.L. Anet and M. Giaci, <u>J.Am.Chem.Soc.</u>, 101, 6857 (1979).
- 5. F.A.L. Anet and Xiao-hui Ji, <u>Tetrahedron Lett.</u>, submitted.
- 6. B.J. Price, J.A. Eggleston and I.O. Sutherland, <u>J.Chem.Soc., Chem.Comm.</u>, 922 (1967).
- 7. A. Mannschreck and H. Muensch, <u>Tetrahedron Lett.</u>, 3227 (1968)

(Received in UK 1 June 1984)